News | Subscribe News

Meeting water and energy challenges in agri-food sector with technology

 

Heap of Sugarcane

A farmer sits on a heap of sugarcane at a roadside factory at Bhoothgarh village in the northern Indian state of Punjab. Photograph: Ajay Verma/REUTERS

 

Powered by Guardian.co.ukThis article titled “Meeting water and energy challenges in agri-food sector with technology” was written by Wayne Visser, for theguardian.com on Wednesday 13th August 2014 06.00 UTC

Worldwide, the overall growth in demand for agricultural products will require a 140% increase (pdf) in the supply of water over the next 20 years compared to the past 20 years. While the bulk of this demand will be from irrigation, food processing plants can also be water intensive. So, any technological innovations in the industry that save water are welcome.

One such innovation is by Mars Petcare (pdf), which has developed a recirculation system that reduces the potable water used for cooling in its pet food production process by 95%. Wastewater is also down by 95% and gas by 35% through the use of a treatment method that keeps the water microbiologically stable.

In Brazil, water used in sugar cane processing (pdf) has gone down from 5.6 to 1.83 cubic metres (m3) per tonne in recent years, due to improved technologies and practices in wastewater treatment.

Further reductions can be made by replacing the standard wet cane washing process with a new technique of dry cane washing. Costa Rican company Azucarera El Viejo SA has found that this switch has resulted in more than 6m gallons of water being saved each day during the harvest season, netting savings of approximately $54,000 (£32,000) (pdf).

Of course, in food processing, it is not only volume of water that is important, but also the quality of water effluent associated with the manufacturing process. In Brazil, sugar cane is partly processed into ethanol. Vinasse is a byproduct of this process that pollutes water. Technological innovation shows that, while in Brazil emissions of 10-12 litres of vinasse per litre of ethanol are standard, levels of 6 litres can be achieved (pdf).

Other examples of innovative water quality solutions in the agri-foods sector are Briter-Water, which has been piloted in the EU and uses intensified bamboo-based phytoremediation for treating dairy and other food industry effluent; and the Vertical Green Biobed, developed by HEPIA, a school from the University of Applied Sciences of western Switzerland, to improve water treatment of agricultural effluents.

Generating energy from agricultural waste

Besides water issues, agriculture is also very energy intensive, accounting for 7% of the world’s greenhouse gas emissions, according to 2010 figures. Even carbon emissions associated only with direct energy use by the sector stand at 1.4% of the world’s total (pdf). Energy efficiency technologies will certainly help, but there is an equally big innovation opportunity in generating energy from agricultural waste.

It is estimated that the global biofuels market could double to $185.3bn (£110.5) by 2021 and that next generation sugar cane bagasse-to-biofuels technologies could expand ethanol production in key markets like Brazil and India by 35% without land or water intensification. Experiences in this rapidly growing industry suggest some lessons which can be applied to sustainable technology innovation more generally.

Lesson 1: technologies must be ready-for-market

There are always competing technological solutions at the Research and Development (R&D) phase, but a critical test is which ones are ready to scale commercially. In the case of cellulosic biofuel technologies, despite early research into wheat straw and corn stover, sugar cane biomass ended up being more commercially attractive to big investors like Blue Sugars, Novozymes, Iogen, Beta Renewables, DSM and Codexis.

Lesson 2: partnership is critical for success

There have been few stand-alone projects announced. Instead, technology companies from the US and the EU have generally teamed up with large aggregators of bagasse like Raizen and Petrobras. Apart from technology transfer benefits, access to already-aggregated bagasse is economically essential.

 

Pages: 1 2

Comments are closed.

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.